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Generalized Parton Distributions (GPDs)

GPDs: decomposition of form factors at a given value of t, w.r.t. the
average momentum fraction x = 1

2
(xi + xf ) of the active quark

∫

dxHq(x, ξ, t) = F q
1 (t)

∫

dxH̃q(x, ξ, t) = Gq
A(t)

∫

dxEq(x, ξ, t) = F q
2 (t)

∫

dxẼq(x, ξ, t) = Gq
P (t),

xi and xf are the momentum fractions of the quark before and
after the momentum transfer
2ξ = xf − xi

GPDs can be probed in deeply virtual Compton scattering (DVCS)
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Generalized Parton Distributions (GPDs)

formal definition (unpol. quarks):

∫

dx−

2π
eix−p̄+x

〈

p′
∣

∣

∣

∣

q̄

(

−x
−

2

)

γ+q

(

x−

2

)
∣

∣

∣

∣

p

〉

= H(x, ξ,∆2)ū(p′)γ+u(p)

+E(x, ξ,∆2)ū(p′)
iσ+ν∆ν

2M
u(p)

in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs
must reduce to the ordinary PDFs:

Hq(x, 0, 0) = q(x) H̃q(x, 0, 0) = ∆q(x).

DVCS amplitude

A(ξ, t) ∼
∫ 1

−1

dx

x− ξ + iε
GPD(x, ξ, t)
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by
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by

bx

by

bx

by

x = 0.1

u(x,b⊥) d(x,b⊥)

~pγ
ẑ

ŷ
jz > 0

jz < 0

p polarized in +x̂ direction

lattice results (Hägler et al.)
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GPD←→ SSA (Sivers)

example: γp→ πX

~pγ ~pN d

u

π+

u, d distributions in ⊥ polarized proton have left-right asymmetry in
⊥ position space (T-even!); sign “determined” by κu & κd

attractive FSI deflects active quark towards the center of momentum

→֒ FSI translates position space distortion (before the quark is
knocked out) in +ŷ-direction into momentum asymmetry that
favors −ŷ direction

→֒ correlation between sign of κp
q and sign of SSA: f⊥q

1T ∼ −κp
q

f⊥q
1T ∼ −κp

q confirmed by HERMES data (also consistent with

COMPASS deuteron data f⊥u
1T + f⊥d

1T ≈ 0)
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Probabilistic interpretation of GPDs as Fourier
trafos of impact parameter dependent PDFs

H(x, 0,−∆
2
⊥) −→ q(x,b⊥)

H̃(x, 0,−∆
2
⊥) −→ ∆q(x,b⊥)

E(x, 0,−∆
2
⊥) −→ ⊥ distortion of PDFs when the

target is ⊥ polarized

Chromodynamik lensing and ⊥ SSAs

transverse distortion of PDFs
+ final state interactions

}

⇒ ⊥ SSA in γN −→ π+X

Transverse force on quarks in DIS

Summary

~pγ ~pN d

u

π+
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Quark-Gluon Correlations (Introduction)

(longitudinally) polarized polarized DIS at leading twist −→
‘polarized quark distribution’ gq

1(x) = q↑(x) + q̄↑(x)− q↓(x)− q̄↓(x)
1

Q2 -corrections to X-section involve ‘higher-twist’ distribution

functions, such as g2(x)

σLL ∝ g1 −
2Mx

ν
g2

g2(x) involves quark-gluon correlations and does not have a
parton interpretation as difference between number densities

for ⊥ polarized target, g1 and g2 contribute equally to σLT

σLT ∝ gT ≡ g1 + g2

→֒ ‘clean’ separation between higher order corrections to leading
twist (g1) and higher twist effects (g2)

what can one learn from g2?
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Quark-Gluon Correlations (QCD analysis)

∫

dxx2gT (x) ∝ 〈PS|q̄γ⊥γ5D
+D+ψ|PS〉.

use Lorentz invariance and
equations of motion, e.g. γµD

µq|PS〉 = 0

 term involving
∫

dxx2g1(x) and term involving

〈PS|q̄γ+γ5

[

D⊥, D+
]

q|PS〉 = 〈PS|q̄γ+γ5gG
+⊥q|PS〉

more generally: g2(x) = gWW
2 (x) + ḡ2(x), with

gWW
2 (x) ≡ −g1(x) +

∫ 1

x
dy
y g1(y)

ḡ2(x) involves quark-gluon correlations, e.g.

∫

dxx2ḡ2(x) =
1

3
d2 =

1

6MP+2Sx

〈

P, S
∣

∣q̄(0)gG+y(0)γ+q(0)
∣

∣P, S
〉

√
2G+y ≡ G0y +Gzy = −Ey +Bx

sometimes called color-electric and magnetic polarizabilities

2M2~SχE =
〈

P, S
∣

∣

∣

~ja × ~Ea

∣

∣

∣
P, S

〉

& 2M2~SχB =
〈

P, S
∣

∣

∣
j0a ~Ba

∣

∣

∣
P, S

〉

with d2 = 1

4
(χE + 2χM ) — but these names are misleading!Links between GPDs and TMDs – p.8/32



Quark-Gluon Correlations (Interpretation)

ḡ2(x) involves quark-gluon correlations, e.g.

∫

dxx2ḡ2(x) =
1

3
d2 =

1

6MP+2Sx

〈

P, S
∣

∣q̄(0)gG+y(0)γ+q(0)
∣

∣P, S
〉

QED: q̄(0)eF+y(0)γ+q(0) correlator between quark density q̄γ+q
and (ŷ-component of the) Lorentz-force

F y = e
[

~E + ~v × ~B
]y

= e (Ey −Bx) = −e
(

F 0y + F zy
)

= −e
√

2F+y.

for charged paricle moving with ~v = (0, 0,−1) in the −ẑ direction

→֒ matrix element of q̄(0)eF+y(0)γ+q(0) yields γ+ density (density
relevant for DIS in Bj limit!) weighted with the Lorentz force that a
charged particle with ~v = (0, 0,−1) would experience at that point

→֒ d2 a measure for the color Lorentz force acting on the struck quark
in SIDIS in the instant after being hit by the virtual photon

〈F y(0)〉 = −M2d2 (rest frame; Sx = 1)
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Quark-Gluon Correlations (Interpretation)

Interpretation of d2 with the transverse FSI force in DIS also

consistent with 〈ky
⊥〉 ≡

∫ 1

0
dx

∫

d2k⊥ k
2
⊥f
⊥
1T (x, k2

⊥) in SIDIS (Qiu,
Sterman)

〈ky
⊥〉 = − 1

2p+

〈

P, S

∣

∣

∣

∣

q̄(0)

∫ ∞

0

dx−gG+y(x−)γ+q(0)

∣

∣

∣

∣

P, S

〉

semi-classical interpretation: average k⊥ in SIDIS obtained by
correlating the quark density with the transverse impulse acquired
from (color) Lorentz force acting on struck quark along its
trajectory to (light-cone) infinity

matrix element defining d2 same as the integrand (for x− = 0) in
the QS-integral:

〈ky
⊥〉 =

∫∞
0
dtF y(t) (use dx− =

√
2dt)

→֒ first integration point −→ F y(0)

→֒ (transverse) force at the begin of the trajectory, i.e. at the
moment after absorbing the virtual photon
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Quark-Gluon Correlations (Interpretation)

x2-moment of twist-4 polarized PDF g3(x)
∫

dxx2g3(x) 
〈

P, S
∣

∣

∣
q̄(0)gG̃µν(0)γνq(0)

∣

∣

∣
P, S

〉

∼ f2

→֒ different linear combination f2 = χE − χB of χE and χM

→֒ combine with d2 ⇒ disentangle electric and magnetic force

What should one expect (sign)?
κp

q −→ signs of deformation (u/d quarks in ±ŷ direction for
proton polarized in +x̂ direction −→ expect force in ∓ŷ

→֒ d2 positive/negative for u/d quarks in proton

large NC : du/p
2 = −dd/p

2

consistent with f⊥u
1T + f⊥d

1T ≈ 0

lattice (Göckeler et al.): du
2 ≈ 0.010 and dd

2 ≈ −0.0056

→֒ (M2 ≈ 5GeV

fm 〈F y
u (0)〉 ≈ −50MeV

fm 〈F y
d (0)〉 ≈ 28MeV

fm

x2-moment of chirally odd twist-3 PDF e(x) −→ transverse force on

transversly polarized quark in unpolarized target (↔ Boer-Mulders h⊥1 )
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Quark-Gluon Correlations (chirally odd)

⊥ momentum for quark polarized in +x̂-direction (unpolarized
target)

〈ky
⊥〉 =

g

2p+

〈

P, S

∣

∣

∣

∣

q̄(0)

∫ ∞

0

dx−G+y(x−)σ+yq(0)

∣

∣

∣

∣

P, S

〉

compare: interaction-dependent twist-3 piece of e(x)

∫

dxx2eint(x) ≡ e2 =
g

4MP+2

〈

P, S
∣

∣q̄(0)G+y(0)σ+yq(0)
∣

∣P, S
〉

→֒ 〈F y〉 = M2e2

→֒ (chromodynamic lensing) e2 < 0
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Summary

GPDs FT←→ IPDs (impact parameter dependent PDFs)

E(x, 0,−∆
2
⊥) −→ ⊥ deformation of PDFs for ⊥ polarized target

→֒ κq/p ⇒ sign of deformation

→֒ attractive FSI⇒ f⊥u
1T < 0 & f⊥d

1T > 0

Interpretation of M2d2 ≡ 3M2
∫

dxx2ḡ2(x) as ⊥ force on active
quark in DIS in the instant after being struck by the virtual photon

〈F y(0)〉 = −M2d2 (rest frame; Sx = 1)

In combination with measurements of f2

color-electric/magnetic force M2

4
χE and M2

2
χM

κq/p ⇒ ⊥ deformation⇒ d
u/p
2 > 0 & d

d/p
2 < 0 (attractive FSI)

combine measurement of d2 with that of f⊥1T ⇒ range of FSI

x2-moment of chirally odd twist-3 PDF e(x) −→ transverse force on

transversly polarized quark in unpolarized target (↔ Boer-Mulders h⊥1 )Links between GPDs and TMDs – p.13/32



Summary

distribution of ⊥ polarized quarks in unpol. target described by
chirally odd GPD Ēq

T = 2H̄q
T +Eq

T

→֒ origin: correlation between orbital motion and spin of the quarks

→֒ attractive FSI⇒ measurement of h⊥1 (DY,SIDIS) provides
information on Ēq

T and hence on spin-orbit correlations

expect:

h⊥,q
1 < 0 |h⊥,q

1 | > |fq
1T |

x2-moment of chirally odd twist-3 PDF e(x) −→ transverse force on

transversly polarized quark in unpolarized target (−→ Boer-Mulders)
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What is Orbital Angular Momentum?

Ji decomposition

Jaffe decomposition

recent lattice results (Ji decomposition)

model/QED illustrations for Ji v. Jaffe
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The nucleon spin pizza(s)

Ji Jaffe & Manohar

1
2∆Σ 1

2∆Σ

Jg
∆G

Lq

Lq

Lg

‘pizza tre stagioni’ ‘pizza quattro stagioni’

only 1

2
∆Σ ≡ 1

2

∑

q ∆q common to both decompositions!
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Angular Momentum Operator

angular momentum tensor Mµνρ = xµT νρ − xνTµρ

∂ρM
µνρ = 0

→֒ J̃ i = 1

2
εijk

∫

d3rM jk0 conserved

d

dt
J̃ i =

1

2
εijk

∫

d3x∂0M
jk0 =

1

2
εijk

∫

d3x∂lM
jkl = 0

Mµνρ contains time derivatives (since Tµν does)

use eq. of motion to get rid of these (as in T 0i)

integrate total derivatives appearing in T 0i by parts

yields terms where derivative acts on xi which then
‘disappears’

→֒ J i usally contains both
‘Extrinsic’ terms, which have the structure ‘~x× Operator’,
and can be identified with ‘OAM’
‘Intrinsic’ terms, where the factor ~x× does not appear, and
can be identified with ‘spin’ Links between GPDs and TMDs – p.17/32



Angular Momentum in QCD (Ji)

following this general procedure, one finds in QCD

~J =

∫

d3x
[

ψ†~Σψ + ψ†~x×
(

i~∂ − g ~A
)

ψ + ~x×
(

~E × ~B
)]

with Σi = i
2
εijkγjγk

Ji does not integrate gluon term by parts, nor identify gluon
spin/OAM separately

Ji-decomposition valid for all three components of ~J , but usually
only applied to ẑ component, where the quark spin term has a
partonic interpretation

(+) all three terms manifestly gauge invariant

(+) DVCS can be used to probe ~Jq = ~Sq + ~Lq

(-) quark OAM contains interactions

(-) only quark spin has partonic interpretation as a single particle
density
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Ji-decomposition
1
2∆Σ

Jg

Lq

Ji (1997)

1

2
=

∑

q

Jq + Jg =
∑

q

(

1

2
∆q + Lq

)

+ Jg

with (Pµ = (M, 0, 0, 1), Sµ = (0, 0, 0, 1))

1

2
∆q =

1

2

∫

d3x 〈P, S| q†(~x)Σ3q(~x) |P, S〉 Σ3 = iγ1γ2

Lq =

∫

d3x 〈P, S| q†(~x)
(

~x× i ~D
)3

q(~x) |P, S〉

Jg =

∫

d3x 〈P, S|
[

~x×
(

~E × ~B
)]3

|P, S〉

i ~D = i~∂ − g ~A
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Ji-decomposition
1
2∆Σ

Jg

Lq

~J =
∑

q
1

2
q†~Σq + q†

(

~r × i ~D
)

q + ~r ×
(

~E × ~B
)

applies to each vector component of nucleon
angular momentum, but Ji-decomposition usually
applied only to ẑ component where at least quark spin has
parton interpretation as difference between number densities

∆q from polarized DIS

Jq = 1

2
∆q + Lq from exp/lattice (GPDs)

Lq in principle independently defined as matrix elements of

q†
(

~r × i ~D
)

q, but in practice easier by subtraction Lq = Jq − 1

2
∆q

Jg in principle accessible through gluon GPDs, but in practice
easier by subtraction Jg = 1

2
− Jq

further decomposition of Jg into intrinsic (spin) and extrinsic
(OAM) that is local and manifestly gauge invariant has not been
found
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Lq for proton from Ji-relation (lattice)

lattice QCD⇒ moments of GPDs (LHPC; QCDSF)

→֒ insert in Ji-relation

〈

J i
q

〉

= Si

∫

dx [Hq(x, 0) + Eq(x, 0)] x.

→֒ Lz
q = Jz

q − 1

2
∆q

Lu, Ld both large!

present calcs. show
Lu + Ld ≈ 0, but

disconnected
diagrams ..?

m2
π extrapolation

parton interpret.
of Lq...
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Angular Momentum in QCD (Jaffe & Manohar)

define OAM on a light-like hypesurface rather than a space-like
hypersurface

J̃3 =

∫

d2x⊥

∫

dx−M12+

where x− = 1√
2

(

x0 − x−
)

and M12+ = 1√
2

(

M120 +M123
)

Since ∂µM
12µ = 0

∫

d2
x⊥

∫

dx−M12+ =

∫

d2
x⊥

∫

dx3M120

(compare electrodynamics: ~∇ · ~B = 0 ⇒ flux in = flux out)

use eqs. of motion to get rid of ‘time’ (∂+ derivatives) & integrate
by parts whenever a total derivative appears in the T i+ part of
M12+
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Jaffe/Manohar decomposition
1
2∆Σ

∆G

∑

q Lq

Lg

in light-cone framework & light-cone gauge
A+ = 0 one finds for Jz =

∫

dx−d2
r⊥M

+xy

1

2
=

1

2
∆Σ +

∑

q

Lq + ∆G+ Lg

where (γ+ = γ0 + γz)

Lq =

∫

d3r 〈P, S| q̄(~r)γ+
(

~r × i~∂
)z

q(~r) |P, S〉

∆G = ε+−ij

∫

d3r 〈P, S|TrF+iAj |P, S〉

Lg = 2

∫

d3r 〈P, S|TrF+j
(

~x× i~∂
)z

Aj |P, S〉
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Jaffe/Manohar decomposition
1
2∆Σ

∆G

∑

q Lq

Lg

1

2
=

1

2
∆Σ +

∑

q

Lq + ∆G+ Lg

∆Σ =
∑

q ∆q from polarized DIS (or lattice)

∆G from
→
p
←
p or polarized DIS (evolution)

→֒ ∆G gauge invariant, but local operator only in light-cone gauge
∫

dxxn∆G(x) for n ≥ 1 can be described by manifestly gauge inv.
local op. (−→ lattice)

Lq, Lg independently defined, but

no exp. identified to access them

not accessible on lattice, since nonlocal except when A+ = 0

parton net OAM L = Lg +
∑

q Lq by subtr. L = 1

2
− 1

2
∆Σ−∆G

in general, Lq 6= Lq Lg + ∆G 6= Jg

makes no sense to ‘mix’ Ji and JM decompositions, e.g. Jg −∆G

has no fundamental connection to OAM
Links between GPDs and TMDs – p.24/32



Lq 6= Lq

Lq matrix element of

q†
[

~r ×
(

i~∂ − g ~A
)]z

q = q̄γ0
[

~r ×
(

i~∂−g ~A
)]z

q

Lz
q matrix element of (γ+ = γ0 + γz)

q̄γ+
[

~r × i~∂
]z

q
∣

∣

∣

A+=0

For nucleon at rest, matrix element of Lq same as that of

q̄γ+

[

~r ×
(

i~∂−g ~A
)]z

q

→֒ even in light-cone gauge, Lz
q and Lz

q still differ by matrix element

of q†
(

~r × g ~A
)z

q
∣

∣

∣

A+=0
= q† (xgAy − ygAx) q

∣

∣

A+=0

Links between GPDs and TMDs – p.25/32



Summary part 1:

Ji: Jz = 1

2
∆Σ +

∑

q Lq + Jg

Jaffe: Jz = 1

2
∆Σ +

∑

q Lq + ∆G+ Lg

∆G can be defined without reference to gauge (and hence gauge
invariantly) as the quantity that enters the evolution equations

and/or
→
p
←
p

→֒ represented by simple (i.e. local) operator only in LC gauge and
corresponds to the operator that one would naturally identify with
‘spin’ only in that gauge

in general Lq 6= Lq or Jg 6= ∆G+ Lg, but

how significant is the difference between Lq and Lq, etc. ?
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OAM in scalar diquark model

[M.B. + Hikmat Budhathoki Chhetri (BC), PRD 79, 071501 (2009)]

toy model for nucleon where nucleon (mass M ) splits into quark
(mass m) and scalar ‘diquark’ (mass λ)

→֒ light-cone wave function for quark-diquark Fock component

ψ↑
+ 1

2

(x,k⊥) =
(

M +
m

x

)

φ ψ↑− 1
2

= −k
1 + ik2

x
φ

with φ = c/
√

1−x

M2−
k2
⊥

+m2

x
−

k2
⊥

+λ2

1−x

.

quark OAM according to JM: Lq =
∫ 1

0
dx

∫

d2
k⊥

16π3 (1− x)
∣

∣

∣
ψ↑− 1

2

∣

∣

∣

2

quark OAM according to Ji: Lq = 1

2

∫ 1

0
dxx [q(x) +E(x, 0, 0)]− 1

2
∆q

 (using Lorentz inv. regularization, such as Pauli Villars
subtraction) both give identical result, i.e. Lq = Lq

not surprising since scalar diquark model is not a gauge theory
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OAM in scalar diquark model

But, even though Lq = Lq in this non-gauge theory

Lq(x) ≡
∫

d2
k⊥

16π3
(1−x)

∣

∣

∣
ψ↑− 1

2

∣

∣

∣

2

6= 1

2
{x [q(x) + E(x, 0, 0)]−∆q(x)} ≡ Lq(x)

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 1
x

L 
q (x)

L 
q (x)

→֒ ‘unintegrated Ji-relation’ does not yield x-distribution of OAM
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OAM in QED

light-cone wave function in eγ Fock component

Ψ↑
+ 1

2
+1

(x,k⊥) =
√

2
k1 − ik2

x(1− x)φ Ψ↑
+ 1

2
−1

(x,k⊥) = −
√

2
k1 + ik2

1− x φ

Ψ↑− 1
2
+1

(x,k⊥) =
√

2
(m

x
−m

)

φ Ψ↑− 1
2
+1

(x,k⊥) = 0

OAM of e− according to Jaffe/Manohar

Le =
∫ 1

0
dx

∫

d2
k⊥

[

(1− x)
∣

∣

∣
Ψ↑

+ 1
2
−1

(x,k⊥)
∣

∣

∣

2

−
∣

∣

∣
Ψ↑

+ 1
2
+1

(x,k⊥)
∣

∣

∣

2
]

e− OAM according to Ji Le = 1

2

∫ 1

0
dxx [q(x) + E(x, 0, 0)]− 1

2
∆q

 Le = Le + α
4π 6= Le

Likewise, computing Jγ from photon GPD, and ∆γ and Lγ from

light-cone wave functions and defining L̂γ ≡ Jγ −∆γ yields

L̂γ = Lγ + α
4π 6= Lγ

α
4π appears to be small, but here Le, Le are all of O(α

π )
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OAM in QCD

→֒ 1-loop QCD: Lq − Lq = αs

3π

recall (lattice QCD): Lu ≈ −.15; Ld ≈ +.15

QCD evolution yields negative correction to Lu and positive
correction to Ld

→֒ evolution suggested (A.W.Thomas) to explain apparent
discrepancy between quark models (low Q2) and lattice results
(Q2 ∼ 4GeV 2)

above result suggests that Lu > Lu and Ld > Ld

additional contribution (with same sign) from vector potential due
to spectators (MB, to be published)

→֒ possible that lattice result consistent with Lu > Ld
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Summary JiJaffe & Manohar

1
2∆Σ1

2∆Σ

Jg
∆G

∑

q Lq

∑

q Lq

Lg

inclusive
→
e
←
p /
→
p
←
p

provide access to

quark spin 1

2
∆q

gluon spin ∆G

parton grand total OAM L ≡ Lg +
∑

q Lq = 1

2
−∆G−∑

q ∆q

DVCS & polarized DIS and/or lattice provide access to

quark spin 1

2
∆q

Jq & Lq = Jq − 1

2
∆q

Jg = 1

2
−

∑

q Jq

Jg −∆G does not yield gluon OAM Lg

Lq − Lq = O(0.1 ∗ αs) for O (αs) dressed quark
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Announcement:

workshop on Orbital Angular Momentum of Partons in Hadrons

ECT∗ 9-13 November 2009

organizers: M.B. & Gunar Schnell

confirmed participants: M.Anselmino, H.Avakian, A.Bacchetta,
L.Bland, D.Fields, L.Gamberg, G.Goldstein,
M.Grosse-Perdekamp, P.Hägler, X.Ji, R.Kaiser, E.Leader, S.Liutti,
N.Makins, A.Miller, D.Müller, P.Mulders, A.Schäfer, G.Schierholz,
O.Teryaev, W.Vogelsang, F.Yuan
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